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LETTER TO THE EDITOR 

Generalisation of the density-functional theory and 
three-body interactions in classical fluids 

Hiroshi Iyetomi? and P Vashishta 
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA 

Received 21 December 1988 

Abstract. An external field coupled with the two-body density distribution function leads to 
a generalisation of the density-functional theory in which the free energy is regarded as a 
functional not only of the density but also of the two-body distribution function. The 
generalised formalism is applied to the liquid structure theory in the presence of a weak 
three-body potential. The first-order calculation shows that the three-body effects are fully 
incorporated into the theory through modification of the pair potential by virtue of the 
variational property of the free-energy functional. 

Three-body forces to represent the covalency play a significant role in determining the 
structure of elemental semiconductors (Pearson et a1 1984, Stillinger and Weber 1985, 
1987, Biswas and Hamann 1985,1987, Ding and Andersen 1986) and dichalcogenides 
(Vashishta eta1 1989) such as GeSez and %Se2 in condensed phase. Without the inclusion 
of such forces, for example, the diamond structure in pure elemental semiconductors is 
unstable against close-packed structures (Stillinger and Weber 1985, Biswas and Ham- 
ann 1985). Hence, for studying a general class of covalent materials where the effects 
both of covalency and of charge transfer are important, it is essential to treat three-body 
potentials in addition to short- and long-ranged two-body potentials. Recent detailed 
thermodynamic and structural analyses also indicate the existence of many-body inter- 
actions even in the rare gases (see Barker 1986 and references therein) and molten salts 
(Malescio et a1 1985). The effective potential energy for ions in liquid metals may have 
many-body terms through the non-linear response functions of the electron gas (Ashcroft 
and Stroud 1978). 

The possibility of incorporating a weak triplet potential into the integral-equation 
theory for the correlation function of classical liquids has thus far been considered on 
the basis of the diagrammatic method. Rushbrooke and Silbert (1967) found that the 
three-body effects are taken into account through replacing the pair potential by an 
effective potential in the hypernetted-chain (HNC) theory (Van Leeuwen et al 1959, 
Morita 1960); subsequently, Rowlinson (1967) obtained an effective potential consistent 
with the Percus-Yevick (Percus and Yevick 1958) equation. The effective potential is 
defined here by the condition that, if it is substituted for the actual pair potential in the 
statistical mechanical formula which is based on the assumption of pair-wise additivity, 
the extra terms resulting from the substitution will provide the appropriate correction 
due to the three-body potential (for a discussion of the effective potential see Stillinger 
t On leave from Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan. 
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(1972)). Casanova et a1 (1970) finally advanced those diagrammatic analyses to obtain 
a series-expansion formula for the correction which leads to the exact distribution 
function; Sinha et al(1977) later carried out a partial summation of the series expansion 
using the topological reduction technique to eliminate the pair potential with the cor- 
relation functions. 

The purpose of the present paper is to reconsider this problem in terms of the density- 
functional theory (DE) developed by Hohenberg and Kohn (1964), Kohn and Sham 
(1965), and Mermin (1965). The formualtion based on the DFT not only simplifies the 
treatment but also clarifies the physical nature of the approximations adopted. As 
compared with the cluster-expansion theory, a renormalisation of the inter-particle 
potential arising from strong multi-particle correlations (the topological reduction) is 
achieved in a natural way. To accommodate three-body interactions in the formulation, 
however, we have to generalise the DFT so that the free energy functional depends on 
the two-body distribution function as well as on the density. 

Let us begin by assuming that a uniform system with density po has an interaction 
energy consisting of two-body and three-body terms 

U( r l , .  . . , r N )  = E u(ri,rj) + E w(r i , r j t  rk) 
l < i s j s N  1 s i < j s k < N  

where u(ri, r,) depends only on the separation of atoms i and j, and w(r,, r,, rk),  only on 
the shape and size of the i, j, k triangle. If a test particle identical to the system particles 
is introduced at the origin, the relative density p( r ) /po  amounts to the radial distribution 
function g(r )  of the uniform system (Percus 1964). This observation provides a basis for 
the link between the integral-equation theory and the density-function theory. 

In the absence of the three-body potential w ,  the conventional DFT (Hohenberg and 
Kohn 1964, Kohn and Sham 1965, Mermin 1965) in which the intrinsic Helmholtz free- 
energy F [ p ( r ) ]  of the non-uniform system with an external field q,,.(r) is regarded as a 
functional of the density&), combined with the identity, qext(r) = u ( r ) ,  gives (Ichimaru 
et a1 1987) the exact equation for g(r ) :  

g ( r )  = exp(-u(r)/kBT+ h(r)  - c(r)  + B ( r ) ) .  (1) 

Here the two-body direct correlation function c(r) is related to the pair correlation 
function h(r) = g(r )  - 1 through the Ornstein-Zernike relation 

The function B(r ) ,  corresponding to the sum of all the bridge diagrams in the cluster- 
expansion theory, is expressed in terms of the direct correlation functions c, (v 3 3) as 

1 
B(r)  = 2 - p i - '  I d r l  . . . dr,-l  c , ( r ,  r l ,  . . . , rv- l )h(r l ) .  . . h ( ~ ~ - ~ ) .  (3) 

v r 3  (v - l)! 

The functions c, are generated from the correlation part in the Helmholtz free energy 
by successive functional differentiation with respect to the density (Evans 1979, Ichimaru 
et a1 1987). 

Incorporation of the three-body potential into the formulation, however, requires 
us to generalise the Dmitself. To utilise the trick due to Percus, it is necessary to introduce 
an additional external field qext(rl ,  r2) coupled with the two-body density distribution 
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function p2(r l ,  r2).  We can readily carry out such a generalisation following Mermin's 
prescription (Mermin 1965, Kohn and Vashishta 1983). 

We now generalise the DFT to incorporate three-body potentials. Let us consider a 
uniform system with the Hamiltonian Ho at a given temperature Tand chemical potential 
y .  For the system under the influence of the external fields, QeXt(r) and qext(rl, r2), the 
grand canonical density matrix operator is given by 

P = exP[-(H - P W k B  T I P r  exp[-(H - PN)/kB TI 

where 

The thermodynamic potential R is then calculated according to 

52 = T r p ( H  - y N  + k g T l n p )  

which may be regarded as a functional of p .  The proof proceeds by reductio ad absurdum 
using the minimum property of R [p]. We have thus obtained the following two theorems. 

Theorem I .  In a grand canonical ensemble at a given temperature T ,  the density 
distribution functions, p(r)  and p2(r l ,  r2),  uniquely determine the external fields, 
Gext(r) - y and qext(r l ,  r2), including the chemical potential y .  

Theorem2. For given @ext(r) - y and qext (r l ,  r2),  there exists a functional of p( r )  and 
P2@l, r2), 

51 = ~ [ p ( r ) ,  Pz(r1, r2)1+ j drp(r)(@ext(r) - P) 

+ i i d r l  dr2 P2(rl,r2)qext(rl,r2) (4) 

which takes an absolute minimum when p(r)  and p2(r l ,  r2) are the correct distribution 
functions associated with @ext(r) and qext(rl, r2); the minimum value is equal to the 
thermodynamic potential in the equilibrium. The intrinsic Helmholtz free energy Fis  a 
universal, temperature-dependent function of p(r)  and p2(rl ,  r2) alone. 

We now turn to the derivation of the integral equations with three-body potential. 
If we assume the three-body potential w to be weak, it is possible to adopt aperturbational 
treatment in the calculation of (4). If p2(rl, r2) is expanded with respect to qext(rl, r2), 

(1) 
(5 1 

(6) 

P2G.1, r2) = P% , r2) + P2 (r1, r2) + * ' * 

mw, P% , r2)l/dP:)(rl, r2) = 0. 

the zeroth-order term p r )  is a functional only of p(r)  and satisfies 

Substituting ( 5 )  for p2 in (4) and retaining terms up to the first order in qext(rl, r2), we 
obtain 
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where the variational condition (6) eliminates the contribution stemming from the 
derivative of F. 

The generalised formalism should reduce to the original one in the limit of 
q e x t ( r 1 ,  r2) = 0 ,  i.e. 

%m, P%l, .2>1 = F[PWl. 
Following the same procedure as is used in deriving ( l ) ,  we thereby find that the 
variational equation for Q, coupled with the trick, qext(r) = u(r)  and qext(rl, r2) = 
w(0, r l ,  r2), yields the exact equation for g(r)  which is obtained by replacing u(r)  in (1) 
with 

Here p(r)  = p o g ( r )  is assumed and we have introduced the pair distribution function, 
g[rl, r2; p(r)], of the inhomogeneous system with the density distribution p(r)  through 

P%l, r2) = P(rl)P(r*)g[rl, r2;P(r)I* 

To derive an explicit formula for the effective potential in the present scheme, we 
first note that when the triplet potential w is included, the direct correlation functions c, 
are given as a functional not only of h(r) but also of w(rl ,  r,, r3).  We thus decompose c,  
with v 2 3 into two parts, 

c,, = cLo) + Ac,, (9) 
where cLo) stands for a collection of diagrams comprising the h-functions alone, that is, 
for the genuine two-body structure, and Acv is a sum of the remaining diagrams involving 
w ;  the first few terms for c r )  have been obtained by Hernando (1986). Substituting (9) 
in (3) and rearranging the exponent in ( l ) ,  we obtain the following effective potential: 

x J d r l  . . . drv.-l  Acv(r ,  r l ,  . . . , rv- l )h( r l ) .  . . h(ry-l) .  (10) 

This is the density-functional counterpart of the exact diagrammatic result by Casanova 
et a2 (1970); the distinction between w and [exp(-w/kBT)] - 1 has no meaning in the 
first-order calculation with respect to w .  The modification of the pair potential due to 
the three-body potential has been classified into two contributions: one results from the 
interaction term with the external field, the other from the correlation term in the 
intrinsic Helmholtz free-energy functional. 

The integral equation for g ( r )  now has the form 

g(r )  = eXp(-u,R(Y)/kB T + h(r) - C ( Y )  + B @ ) ( Y ) )  (11) 

where ueff(r) is given by (10) and B(O)(r) is the pair-potential bridge function. It has 
thus turned out that the three-body effects are fully taken into account through the 
renormalisation of the two-body potential and the structure of the integral-equation 
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scheme, (2) and ( l l ) ,  is essentially the same as that of the pair-potential theory by virtue 
of the variational property. 

The HNC approximation (Van Leeuwen et aZ1959, Morita 1960), one of the most 
widely applied integral-equation schemes, is defined by neglecting the three-body and 
higher-order direct correlation functions, that is setting B(r)  = 0 in (1). To be consistent 
with this scheme, we may discard the multi-particle correlations involveding[rl, r2; p ( r ) ]  
through the inhomogeneity by approximating g[rl, r2; p ( r ) ]  in (8) with the radial distri- 
bution function g(r)  of the corresponding uniform system. Such a treatment yields 

g(r)  = exp[ - (u ( r )  + A u ( r ) ) / k g  T + h(r) - c ( r ) ]  (12) 

where 

= Po 1 dr1 4 0 ,  r,  rlk(rl)g(Ir - r1Ih (13) 

The correction (13) is equivalent to the leading term in the renormalised series expansion 
(Sinha et aZ1977). Replacement of g(r)  by its weak coupling form, exp( -u ( r ) /kgT) ,  in 
(13) recovers the effective potential obtained by Rushbrooke and Silbert (1967) for the 
HNC equation. Since w(0, r l ,  r2) and g( / r  - rli)  depend only on the magnitude of r and 
rl and the direction cosine, cos 8,  betweenrandrl, the complexity involvedin calculating 
(13) reduces to the double integral with respect to Irl I and cos 8. According to Schneider 
et aZ(1970), we can refine (13) using 

dr1, r2; p(r)l = dlr1 - 4)  + B(SP(rl> + M r 2 ) )  Mlr1 - r2I>/ap, 

with Sp(r )  = p(r)  - po. 
In conclusion we have extended the density-functional theory to take into account 

three-body forces. The perturbational calculation was then carried out for the correction 
due to the three-body potential and the correspondence with the previous diagrammatic 
results was established. The resulting equations (12) and (13) in conjunction with (2) 
give a closed set of equations for the correlation functions of classical liquids. We plan 
to apply the scheme described here to the calculation for the structure of chalcogenides 
in molten and glassy states using an effective two-body and three-body interaction 
potential. 

This work was supported by the US Department of Energy, BES-Materials Sciences, 
under contract W-31-109-ENG-38. 
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